CHEM1109 Example Multiple Choice Questions

The following multiple choice questions are provided to illustrate the type of questions used in this section of the paper and to provide you with extra practice.
It is not a sample quiz. The questions in the paper will be in the style of these questions but may well cover different topics.

In the exam, the answer should be indicated by clearly circling the letter next to the choice you make and by filling in the corresponding box on the computer-marked sheet provided. The marks for each correct answer are given beside each question.

Instructions for use of the computer sheet. Draw a thick line through the centre and crossing both edges of each box selected, as in this example.

Use a dark lead pencil so that you can use an eraser if you make an error. Errors made in ink cannot be corrected - you will need to ask the examination supervisor for another sheet. Boxes with faint or incomplete lines or not completed in the prescribed manner may not be read. Be sure to complete the SID and name sections of the sheet.
Your answer as recorded on the sheet will be used in the event of any ambiguity.
There is only one correct choice for each question.
Negative marks will not be awarded for any question.

1. Which statement correctly describes Hess's Law?

Marks

A The enthalpy of all reactants in their standard states is defined as zero.
B Enthalpy changes may only be calculated if one or more of the reactants is an element.

C The enthalpy change of a reaction is independent of the route taken.
D The enthalpy change of a reaction may only be calculated at 1 atm pressure and $25^{\circ} \mathrm{C}$.

E Exothermic reactions occur quickly, endothermic reactions occur slowly.
2. Which one of the following statements best describes the standard enthalpy of formation of any element?

A The value of ΔH° f(element) depends on temperature.
B The value of $\Delta H^{\circ}{ }_{\mathrm{f}}$ (element) is zero only for elements in the solid state.
C The value of ΔH° (element) is zero for any element in the standard state.
D The value of ΔH° (element) is zero only at absolute zero temperature.
E The value of ΔH° (element) depends on S° for that element.
3. Under which circumstances would a reaction be non-spontaneous at all temperatures?

A ΔH° negative and ΔS° positive
B ΔH° negative and ΔS° negative
C ΔH° positive and ΔS° negative
D ΔH° positive and ΔS° positive
E It is impossible to tell without calculating ΔG°.
4. In which direction will the following equilibrium shift if a solution of $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}$ is added?

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

A shift to the right (more products)
B shift to the left (more reactant)
C no change
D cannot be predicted
5. In which of the following acid / base titrations, can we NOT determine the equivalence point in an accurate manner?

A strong acid / strong base
B strong acid / weak base
C weak acid / strong base
D weak acid / weak base
6. What is the expression for K_{a} for the following reaction?

Marks 1

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})
$$

A $\quad K_{\mathrm{a}}=\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})\right]\left[\mathrm{H}^{+}(\mathrm{aq})\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]$
B $\quad K_{\mathrm{a}}=2\left[\mathrm{H}^{+}(\mathrm{aq})\right] /\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]$
C $\quad K_{\mathrm{a}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2} /\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right]$
D $K_{\mathrm{a}}=\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})\right] /\left[\mathrm{H}^{+}(\mathrm{aq})\right]^{2}$
7. Rank the following 1 M water solutions in order of decreasing freezing point.

| NaCl | glucose | CaCl_{2} | $\mathrm{CH}_{3} \mathrm{COOH}$ | $\mathrm{Na}_{3} \mathrm{PO}_{4}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

highest freezing point lowest freezing point
A $\quad \mathrm{NaCl}>$ glucose $>\mathrm{CaCl}_{2}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{Na}_{3} \mathrm{PO}_{4}$
B glucose $>\mathrm{NaCl}>\mathrm{CaCl}_{2}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{Na}_{3} \mathrm{PO}_{4}$
C glucose $>\mathrm{NaCl}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{CaCl}_{2}>\mathrm{Na}_{3} \mathrm{PO}_{4}$
D glucose $>\mathrm{NaCl}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{Na}_{3} \mathrm{PO}_{4}>\mathrm{CaCl}_{2}$
E glucose $>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{NaCl}>\mathrm{CaCl}_{2}>\mathrm{Na}_{3} \mathrm{PO}_{4}$
8. Arrange the following species from left to right in order of increasing radius. $\mathrm{Na}, \mathrm{Mg}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$

A $\quad \mathrm{F}^{-}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{Mg}<\mathrm{Na}$
B $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{F}^{-}<\mathrm{Mg}<\mathrm{Na}$
C $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{F}^{-}<\mathrm{Na}<\mathrm{Mg}$
D $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{Mg}<\mathrm{Na}$
E $\mathrm{Mg}^{2+}<\mathrm{Mg}<\mathrm{Na}^{+}<\mathrm{Na}<\mathrm{F}^{-}$
9. What is the $\left[\mathrm{OH}^{-}\right]$of a solution with a pH of 9.0 ?

A $\quad 1 \times 10^{-5} \mathrm{M}$
B $\quad 1 \times 10^{-9} \mathrm{M}$
C $\quad 1 \times 10^{-4} \mathrm{M}$
D $\quad 1 \times 10^{-7} \mathrm{M}$
E none of the above
10. Which of the following statements regarding the solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is correct?

A pH has no effect on the solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$.
B $\quad \mathrm{Mg}(\mathrm{OH})_{2}$ is less soluble at pH 4 than pH 7.
C $\quad \mathrm{Mg}(\mathrm{OH})_{2}$ is less soluble in $0.1 \mathrm{M} \mathrm{MgCl}_{2}$ solution than in water.
D all of the above
E none of the above
11. When cells are placed into an isotonic solution (i.e. the solution and cell fluid have the same osmotic pressure):

A no exchange of water across the cell membrane occurs.
B water enters the cell faster than it leaves the cell.
C water leaves the cell faster than it enters the cell.
D water enters the cell at the same rate that it leaves the cell.
E ready exchange of solutes, but not water, occurs across the cell membrane.
12. What is the relationship between K_{c} and K_{p} for the following reaction?

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{C}(\mathrm{~g})
$$

A $\quad K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{2}$
B $\quad K_{\mathrm{c}}=K_{\mathrm{p}}(R T)^{2}$
C $\quad K_{\mathrm{c}}=K_{\mathrm{p}}$
D $\quad K_{\mathrm{c}}=\sqrt{ } K_{\mathrm{p}}$
E $\quad K_{\mathrm{c}}=K_{\mathrm{p}} R T$
13. Histidine is an amino acid. The fully protonated form has the $\mathrm{p} K_{\mathrm{a}}$ values indicated below.

Which one of the following is the predominant structure at pH 7.6 ?

A

D

B

C
14. Arrange the following 1 M solutions in order of increasing pH .

A $\mathrm{KOH}<\mathrm{CaCl}_{2}<\mathrm{Na}_{3} \mathrm{PO}_{4}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCl}$
B $\mathrm{HCl}<\mathrm{CaCl}_{2}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{KOH}<\mathrm{Na}_{3} \mathrm{PO}_{4}$
C $\quad \mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCl}<\mathrm{CaCl}_{2}<\mathrm{KOH}<\mathrm{Na}_{3} \mathrm{PO}_{4}$
D $\mathrm{HCl}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{Na}_{3} \mathrm{PO}_{4}<\mathrm{CaCl}_{2}<\mathrm{KOH}$
E $\quad \mathrm{HCl}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CaCl}_{2}<\mathrm{Na}_{3} \mathrm{PO}_{4}<\mathrm{KOH}$
In answering questions 15-19, consider the following titration curve.

15. Which one of the following combinations does the titration curve represent?

A Addition of a strong base to a weak acid
B Addition of a weak base to a strong acid
C Addition of a strong acid to a weak base
D Addition of a weak acid to a strong base
E Addition of a strong acid to a strong base
16. What is the value of the $\mathrm{p} K_{\mathrm{a}}$ that can be obtained from this titration curve?
A 11.3
B 10.0
C 9.3
D 5.3
E 1.8
17. What is the pH of the solution at the point of maximum buffering?
A 11.3
B 10.0
C 9.3
D 5.3
E 1.8
18. What is the pH of the solution at the equivalence point?
A 11.3
B 10.0
C 9.3
D 5.3
E 1.8
19. Which one of the following indicators would be most suitable for this titration?

Marks 1

A any acid/base indicator is suitable
B phenolphthalein $\left(\mathrm{p} K_{\mathrm{a}}=9.6\right)$
C cresol red $\left(\mathrm{p} K_{\mathrm{a}}=8.3\right)$
D methyl red $\left(\mathrm{p} K_{\mathrm{a}}=5.1\right)$
E methyl yellow $\left(\mathrm{p} K_{\mathrm{a}}=3.1\right)$
20. How many stereoisomers are possible for the complex $\left[\mathrm{NiCl}_{2}(\mathrm{en})_{2}\right]$? $\mathrm{en}=$ ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

A 1
B 2
C 3
D 4
E 6
21. How many stereoisomers are possible for the complex $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$? en $=$ ethylenediamine $=\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

A 1
B 2
C 3
D 4
E 6
22. What is the solubility constant expression for $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

A $\quad K_{\mathrm{sp}}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]$
B $\quad K_{\mathrm{sp}}=\left[\mathrm{Zn}^{2+}\right]\left[2 \mathrm{PO}_{4}{ }^{3-}\right]$
C $\quad K_{\text {sp }}=\left[\mathrm{Zn}^{2+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{2}$
D $\quad K_{\text {sp }}=\left[3 \mathrm{Zn}^{2+}\right]^{3}\left[2 \mathrm{PO}_{4}{ }^{3-}\right]^{2}$
E $\quad K_{\mathrm{sp}}=\left[\mathrm{Zn}^{3+}\right]^{2}\left[\mathrm{PO}_{4}{ }^{2-}\right]^{3}$
23. What is the solubility product constant expression for $\mathrm{Ag}_{3} \mathrm{PO}_{4}$?

A $\quad K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]$
B $\quad K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]^{3}$
C $\quad K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]$
D $\quad K_{\mathrm{sp}}=\left[3 \mathrm{Ag}^{+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]$
E $\quad K_{\text {sp }}=3\left[\mathrm{Ag}^{+}\right]\left[\mathrm{PO}_{4}{ }^{3-}\right]$
24. How would the concentration of $\mathrm{Pb}^{2+}(\mathrm{aq})$ ions in equilibrium with $\mathrm{PbI}_{2}(\mathrm{~s})$ be affected if the concentration of $\mathrm{I}^{-}(\mathrm{aq})$ ions were doubled?

Marks 1

A no change
B increased by a factor of 2
C decreased by a factor of 2
D decreased by a factor of 4
E decreased by a factor of 16
25. Which one of the following is a coordination isomer of the complex salt, trans- $\left[\mathrm{CrCl}_{2}\left(\mathrm{OH}_{2}\right)_{4}\right] \mathrm{Br}$?

A cis- $\left[\mathrm{CrCl}_{2}\left(\mathrm{OH}_{2}\right)_{4}\right] \mathrm{Br}$
B trans- $\left[\mathrm{CrBrCl}\left(\mathrm{OH}_{2}\right)_{4}\right] \mathrm{Cl}$
C trans- $\left[\mathrm{Cr} \mathrm{Br}_{2}\left(\mathrm{OH}_{2}\right)_{4}\right] \mathrm{Cl}$
D trans- $\left[\mathrm{CrBr}_{2}\left(\mathrm{OH}_{2}\right)_{4}\right] \mathrm{Cl}$
E trans- $\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}$
26. Which one of the following equations describes the enthalpy of combustion of glucose.

A $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 6 \mathrm{C}(\mathrm{s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})$
C $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow 6 \mathrm{C}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})$
D $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})$
E $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Questions 27-30 refer to the voltaic cell shown below.

27. What is the overall reaction occurring in this cell?
A $\quad \mathrm{There} \mathrm{will} \mathrm{be} \mathrm{no} \mathrm{spontaneous} \mathrm{reaction.}_{\text {B }} \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Ni}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq})$
C $\quad \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Ni}^{2+}(\mathrm{aq})$
D $\quad \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ni}^{2+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Ni}(\mathrm{s})$
E $\quad \mathrm{Cu}(\mathrm{s})+\mathrm{Ni}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ni}^{2+}(\mathrm{aq})+4 \mathrm{e}^{-}$
28.
What would be the value of $E_{\text {cell }}$ at equilibrium?
A $\quad 0.58 \mathrm{~V}$
B $\quad 0.34 \mathrm{~V}$
C $\quad 0.24 \mathrm{~V}$
D $\quad 0.10 \mathrm{~V}$
E $\quad 0.00 \mathrm{~V}$

29. What is the reading on the voltmeter when the half cells are first connected?

A $\quad 0.58 \mathrm{~V}$
B $\quad 0.34 \mathrm{~V}$
C $\quad 0.24 \mathrm{~V}$
D 0.10 V
E $\quad 0.00 \mathrm{~V}$
30. Which electrode is the anode and to which electrode do the electrons flow?

A The Ni electrode is the anode; electrons flow to the cathode.
B The Cu electrode is the anode; electrons flow to the cathode.
C The Ni electrode is the anode; electrons flow to the anode.
D The Cu electrode is the anode; electrons flow to the anode
31. Rank the following series of atoms in order of INCREASING electronegativity.

Marks 1

$$
\begin{array}{lllll}
\mathrm{N} & \mathrm{O} & \mathrm{~F} & \mathrm{P} & \mathrm{As}
\end{array}
$$

A $\quad \mathrm{N}<\mathrm{O}<\mathrm{F}<\mathrm{P}<\mathrm{As}$
B $\quad \mathrm{F}<\mathrm{O}<\mathrm{N}<\mathrm{P}<$ As
C \quad As $<\mathrm{P}<\mathrm{N}<\mathrm{O}<\mathrm{F}$
D \quad As $<$ P $<$ N $<$ F $<$ O
E $\quad \mathrm{F}<\mathrm{N}<\mathrm{O}<\mathrm{As}<\mathrm{P}$
32. A reaction has an activation energy of $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and an overall energy change of $-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$. In each of the potential energy diagrams shown below, the
A

reactants
products
B

D

 horizontal axis is the reaction coordinate and the vertical axis is potential energy in $\mathrm{kJ} \mathrm{mol}^{-1}$. Which potential energy diagram best describes this reaction?
33. What is the missing particle for the following nuclear decay process?

$$
{ }_{55}^{137} \mathrm{Cs} \rightarrow \quad{ }_{56}^{137} \mathrm{Ba}+?
$$

A ${ }_{0}^{1} n$
B ${ }_{1}^{0} \alpha$
C $\quad{ }_{-1}^{0} \alpha$
D ${ }_{-1}^{0} \beta$
E $\quad{ }_{1}^{0} \beta$
34. What isotope is produced by the α-decay of ${ }_{86}^{222} \mathrm{Rn}$?

A $\quad{ }_{85}^{222} \mathrm{At}$
B $\quad{ }_{84}^{218} \mathrm{Po}$
C $\quad{ }_{88}^{218} \mathrm{Rn}$
D ${ }_{87}^{222} \mathrm{Fr}$
E $\quad{ }_{85}^{221} \mathrm{At}$
35. Which one of the following statements about reaction rate is false?

A Reaction rate is the speed at which the reaction proceeds.
B Reaction rate is governed by the energy barrier between reactants and products.
C Enzymes can accelerate the rate of a reaction.
D Reaction rates are not sensitive to temperature.
36. What isotope is produced by the α-decay of ${ }_{43}^{99} \mathrm{Tc}$?

A None - ${ }_{43}^{99}$ Tc undergoes β^{-}decay
B $\quad{ }_{42}^{99} \mathrm{Mo}$
C $\quad{ }_{41}^{95} \mathrm{Nb}$
D $\quad{ }_{44}^{99} \mathrm{Ru}$
E $\quad{ }_{45}^{103} \mathrm{Rh}$
37. What is the oxidation state of Rh in the complex $\mathrm{K}_{3}\left[\mathrm{Rh}(\mathrm{CN})_{6}\right]$?

A + I
B + III
C + VI
D 0
E - III
38. What is the oxidation state of Tc in $\mathrm{K}_{2}\left[\mathrm{TcO}(\mathrm{ox})_{2}\right]$? ox is the oxalate anion, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$.

A + II
B + III
C + IV
D $\quad+\mathrm{V}$
E + VI
39. A solid pharmaceutical dispersed in a carrier gas is an example of which one of the following?

A a gel
B a foam
C an emulsion
D an aerosol
40. How many isomers are possible for the square planar complex $\left[\mathrm{PtI}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$?

A 1
B 2
C 3
D 4
E 5

Answers

Question	1	2	3	4	5	6	7	8	9	10
Answer	C	C	C	B	D	A	E	D	A	C

Question	11	12	13	14	15	16	17	18	19	20
Answer	D	C	C	E	C	C	C	D	D	C

Question	21	22	23	24	25	26	27	28	29	30
Answer	B	C	C	D	B	E	C	E	A	A

Question	31	32	33	34	35	36	37	38	39	40
Answer	C	A	D	B	D	A	B	C	D	B

